Federated learning – kalendarz adwentowy #10

Federacja – państwo składające się z części obdarzonych autonomią, ale posiadających wspólny rząd. Tak federację definiuje Wikipedia. Jeśli jesteś fanem uniwersum Star Trek, to zapewne kojarzysz Zjednoczoną Federację Planet. Układ partnerski, w którym uczestniczy wiele ras, posiadający wspólny rząd. Ale po co ja w ogóle o tym piszę? Przecież miało być o danych! I będzie. … Czytaj dalej Federated learning – kalendarz adwentowy #10

K najbliższych sąsiadów – kto z kim przestaje, takim się staje

Stawek

Algorytm K najbliższych sąsiadów to bardzo prosty algorytm, który całkiem sensownie ogarnia ideę "nie wiemy, co wydarzy się w tym przypadku, ale jak znajdziemy podobne, to pewnie będzie tak samo". Proste nie? A okazuje się, że również sensowne. Przyjrzyjmy się więc bliżej. Idea - jeden wymiar Zastanówmy się, jak to jest z punktami w jednym … Czytaj dalej K najbliższych sąsiadów – kto z kim przestaje, takim się staje

Accuracy, precision, recall, F1 – co to za czary?

Gęś

Jeżeli zajmujemy się uczeniem nadzorowanym, to rozwiązujemy jakiś problem na bazie cech niezależnych i wynikających z nich cech zależnych. Nasz program "ogląda" cechy niezależne z każdej strony i próbuje stworzyć jakąś relację między nimi a cechami zależnymi. Na przykład w czasie badania wyszło, że przebadana osoba ma 1000 (jakiś) komórek w jednostce objętości i jest … Czytaj dalej Accuracy, precision, recall, F1 – co to za czary?

Pakiet auditor – weryfikacja, walidacja i analiza błędów modelu w R

Zamek

Jakiś czas temu pisałem o narzędziach Pythonowych służących do zaglądania do wnętrza modelu predykcyjnego. Poświęciłem temu tematowi trzy artykuły (ELI5 i czarne pudełka, Partial Dependence Plots, Co to jest SHapley Additive exPlanations (SHAP)?) i pewnie poświęcę jeszcze kilka. Ostatnio natrafiłem na podobne narzędzie, ale przygotowane dla języka R. Narzędzie to nazywa się auditor i chociaż … Czytaj dalej Pakiet auditor – weryfikacja, walidacja i analiza błędów modelu w R

Partial Dependence Plots

Panorama

Jakiś czas temu poznaliśmy ciekawy sposób na określanie ważności kolumn w ramce danych - permutation importance. Dzięki tej metodzie możemy określić ważność kolumn nawet w modelach należących do kategorii black box - czyli takich, które nie oferują przejrzystego dla człowieka procesu podejmowania decyzji. Jako efekt naszej pracy otrzymujemy wytrenowany model z jakimś wynikiem score. Jesteśmy … Czytaj dalej Partial Dependence Plots